
Natural
Debugging Manual

Version 5.1.1 for UNIX and OpenVMS

This document applies to Natural Version 5.1.1 for UNIX/OpenVMS and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes or new editions.

© March 2002, Software AG
All rights reserved

Software AG and/or all Software AG products are either trademarks or registered trademarks of Software AG.
Other products and company names mentioned herein may be the trademarks of their respective owners.

Table of Contents
.................... 1Natural Debugger
................... 1Natural Debugger
................... 2General Information
................... 2General Information
................. 3About This Documentation
................ 4Other Natural Documentation
................. 5Local and Remote Debugging
................. 5Local and Remote Debugging
................... 5Local Debugging
................... 5Remote Debugging
........... 6Scenario 1: Debugging a Single Natural Application
.......... 6Scenario 2: Debugging a Distributed Natural Application
...... 7Scenario 3: Debugging The Natural Part of a Heterogeneous Application
................ 8Setting Up Your Environment
................. 8Windows NT/2000 Side
.................... 8Natural Side
............ 8Running a Natural Remote Debugging Session
................... 9Using the Debugger
................... 9Using the Debugger
.................. 9General Information
................. 9Preparing Natural Objects
................ 9Starting the Natural Debugger
................ 11Leaving the Natural Debugger
................... 11"Exit" Function
............... 12How to Use the Natural Debugger
.................. 12Windows and Menus
............... 12Tool Bars and Tool-Bar Buttons
................ 13Special Key Combinations
................. 14Debugger Source Window
..................... 14Run
.................... 15Variable
................... 15Dialog Boxes
.................. 16Selecting Variables
.............. 16Marking Text in the Source Window
..................... 17Display
..................... 17Modify
..................... 17Watch
.................... 17Watchpoint
..................... 18Source
..................... 20Calls
................. 21Watch Variables Facility
..................... 21Add
................... 22Expand/Contract
..................... 22Delete
..................... 22Display
.................... 22Delete All
................. 22Binary/Alphanumeric
................. 22All Binary/Alphanumeric
................... 23Variable Facility
.................. 23"Variables" Menu
................. 27Watchpoint Operators
..................... 28Refresh
................. 29Watchpoint Maintenance

iCopyright © Software AG 2002

Table of ContentsNatural Debugger

................... 29"Watchpoint" Menu

....................... 29Set

................... 32Breakpoint Maintenance

................... 32"Breakpoint" Menu

Copyright © Software AG 2002ii

Natural DebuggerTable of Contents

Natural Debugger
This document applies to Natural Version 5.1.1 for UNIX and OpenVMS, and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release
notes and new editions.

General Information

Local and Remote Debugging

Using the Debugger

1Copyright © Software AG 2002

Natural DebuggerNatural Debugger

General Information
This documentation contains information related to Natural under UNIX and OpenVMS.

About This Documentation
Other Natural Documentation

Copyright © Software AG 20022

General InformationGeneral Information

About This Documentation
This documentation provides information on how to debug Natural applications. You can do this regardless of
whether the application is located on a UNIX, OpenVMS or Windows computer, or whether the application is
distributed, with access to Natural DCOM or Natural RPC servers.

If your Natural development environment does not provide a debugger, which is the case for Natural for UNIX
and for OpenVMS, you can install the Natural Debugger separately on a Windows computer and call this
debugger remotely from Natural with the DEBUG system command. Alternatively, you can use the Natural
remote debugger from within Natural for Windows NT Version 5.1.1. The following Natural versions can
connect to a remote debugging session:

Natural for UNIX Version 5.1.1
Natural for OpenVMS Version 5.1.1
Natural for Windows NT Version 5.1.1

This documentation contains the following sections:

Section 1, "Local and Remote Debugging", describes the difference between local and remote debugging,
explains the scenarios in which remote debugging can be used, and describes how to prepare an
environment for remote debugging.
Section 2, "Using the Debugger", explains how you can use the Natural Debugger with a given application.

3Copyright © Software AG 2002

About This DocumentationGeneral Information

Other Natural Documentation
For an overview other Natural documentation available for UNIX and OpenVMS, please refer to the User’s
Guide for UNIX and OpenVMS.

Copyright © Software AG 20024

General InformationOther Natural Documentation

Local and Remote Debugging
The following topics are covered below:

Local Debugging
Remote Debugging
Setting Up Your Environment
Running a Natural Remote Debugging Session

Local Debugging
Local debugging, as opposed to remote debugging, is done with a debugger integrated in Windows. This
debugger can be used to debug Natural applications running on the same computer.

Remote Debugging
There are several scenarios of how you can use remote debugging: a single Natural client runs under the control
of one remote debugging session or a distributed Natural application runs under the control of several remote
debugging sessions. Such a distributed application may include both Natural RPC and DCOM servers or even
components not written in Natural, such as Visual Basic clients.

Scenario 1: Debugging a Single Natural Application
Scenario 2: Debugging a Distributed Natural Application
Scenario 3: Debugging The Natural Part of a Heterogeneous Application

5Copyright © Software AG 2002

Local and Remote DebuggingLocal and Remote Debugging

Scenario 1: Debugging a Single Natural Application

Scenario 2: Debugging a Distributed Natural Application

To debug each component of the following distributed Natural application, you enter "DEBUG objectname" in
the command line of Natural Debug Client 1. The first time the Natural Debug Client calls a subprogram on a
Natural RPC server, for example, a new debug session is opened for the RPC server. Then, the RPC server’s
processing is debugged. The debug session is closed as soon as the RPC server is terminated.

The same applies to a Natural DCOM server.

Copyright © Software AG 20026

Local and Remote DebuggingScenario 1: Debugging a Single Natural Application

Scenario 3: Debugging The Natural Part of a Heterogeneous Application

As in Scenario 2, the first time a method on the DCOM server is called, a new debug session is opened for the
DCOM server, the DCOM server’s processing is debugged, and the debugger session is closed as soon as the
DCOM server is terminated:

7Copyright © Software AG 2002

Scenario 3: Debugging The Natural Part of a Heterogeneous ApplicationLocal and Remote Debugging

Setting Up Your Environment

Windows NT/2000 Side

Install the Natural remote debugger or install Natural for Windows NT 4 PL 6 or Windows 2000. This also
installs the Natural Remote Debugging Service.

To uninstall the Natural Remote Debugging Service, enter "natdbgsv -u" in the command line. To view the
current service’s port name and version, enter "natdbgsv -s". To re-install the service on a different port, uninstall
it first and then enter "natdbgsv -i portnumber", where portnumber is the value of the RDPORT profile
parameter.

Note:
If you install the Natural Remote Debugging Service on a port other than 2500, you have to change the value of
the RDPORT profile parameter accordingly on the UNIX client computer.

Natural Side

Start Natural with the following three profile parameter settings:

RDACTIVE=ON;
RDNODE=nodename, where nodename is the name of the Windows NT/2000 server;
RDPORT=2500 (or another port number, depending on which port you have installed the Natural Remote
Debugging Service on the Windows NT computer).

Running a Natural Remote Debugging Session
To run a Natural Remote Debugging Session:

1. Ensure that the Windows NT/2000 server has been started and that the service "natdbgsv" is active.
2. Enter "DEBUG objectname" in the Natural command line, where objectname is the name of the Natural

object you wish to debug.

The Natural Debuggerbecomes active on the Windows NT/2000 computer, with the following window caption:
"Debugging remote Natural client (\\nodename::username::process-id)", where nodename is the name of the
computer where Natural is running, username is the name of the Natural user and process-id is the Natural
process ID.

Copyright © Software AG 20028

Local and Remote DebuggingSetting Up Your Environment

Using the Debugger
The following topics are covered below:

General Information
Preparing Natural Objects
Starting the Natural Debugger
Leaving the Natural Debugger
How to Use the Natural Debugger
Debugger Source Window
Watch Variables Facility
Variable Facility
Watchpoint Maintenance
Breakpoint Maintenance

General Information
The Natural Debugger provides application developers with various benefits and helpful features. For example,
the Natural Debugger enables you to:

gain a faster understanding of programs written by another developer when taking over an application to
maintain, improve or expand it;
in general, develop your own applications more quickly;
better understand the logic of Natural if you are a first-time user.

This can be achieved by:

temporarily controlling or influencing the program flow of a Natural application by modifying variables;
checking the program flow through a calls history indicating which objects are called from which objects;
easily detecting logical application errors in a Natural program by checking the contents of its variables
using breakpoints or conditions for program interruption;
permanently watching variables.

Preparing Natural Objects
To exploit the full functional scope of the Natural Debugger, you must specify the following Natural profile
parameter either dynamically or in your Natural parameter file:

SYMGEN =ON

When an object is CATALOGed or STOWed and SYMGEN is set to ON, a symbol table is generated as part of
the generated program. Since this table contains the information relevant to the variables active for this object,
variables cannot be accessed without SYMGEN being specified, although it is still possible to debug the object.

Starting the Natural Debugger
You can start the Natural Debugger in either of the following ways:

Enter the command DEBUG in the Natural command line along with the name of a Natural object
contained in the current library.
For Windows: Select a Natural object from the library listing and either choose "Debugger" from the

9Copyright © Software AG 2002

Using the DebuggerUsing the Debugger

"Tools" menu or click the corresponding button in the Natural tool bar.

Note:
The Natural Debugger can be applied to stowed or cataloged Natural programs and dialogs only.

Once the Natural Debugger has been started, the application frame window appears, showing additional
information on the debugging session:

Local Debugger: "Natural Debugger"
Remote Debugger: "Debugging remote Natural client (\\nodename::username::process-id)"
Natural application being debugged currently has control: "[waiting]"
Debugger has control: "[break]"

The frame window contains a child window with a source listing of the specified object.

The debugger’s source window is one of the five main facilities of the debugger. The remaining four main
facilities are:

Facility Function

Watch Variables Watch the contents of variables.

Variable Facility Maintain variables.

Watchpoint Maintenance Set and maintain watchpoints.

Breakpoint Maintenance Set and maintain breakpoints.

All these facilities can be invoked by restoring the corresponding icon in the "Natural Debugger" application
window; they can also be chosen from the "Window" menu of the debugger menu bar.

The individual facilities are described in the remainder of this section.

Copyright © Software AG 200210

Using the DebuggerStarting the Natural Debugger

Leaving the Natural Debugger
You can leave the Natural Debugger from any point within an application by choosing either "Exit" (see below)
or the corresponding tool-bar button. You can also leave the Natural Debugger by choosing "Close" from the
"Control" menu of the debugger’s main window.

The debugger is also terminated if the application ends without an error; the trace bar is then placed on the
source code line last executed.

In the case of an error, the corresponding source is displayed in the source window and the trace bar is placed on
the line which caused the error. A message window appears with the appropriate error message and a choice to
either continue or end the debugging session.

Continuing the debugging session may be useful if, for example:

your application contains any error processing (including error transactions);
you want to display any variables before you end your debugging session.

When you leave the Natural Debugger, your window and tool bar settings are automatically saved and will be
the same when you invoke the debugger again.

"Exit" Function

"Exit" terminates the debugging session and returns control to Natural. The "Exit" function is available on the
first menu in the main window of each of the five Natural Debugger main facilities.

11Copyright © Software AG 2002

Leaving the Natural DebuggerUsing the Debugger

How to Use the Natural Debugger
Before going into detail about the debugger’s source window and other main facilities, this section provides you
with general information on the Natural Debugger.

the use and handling of windows, menus and tool bars,
the various ways to execute a function,
the purpose of breakpoints and watchpoints,
how to restart a debugging session.

Windows and Menus

The Natural Debugger provides various windows and menus. As you activate different windows to access menu
items, the menu bar changes to provide the functions applicable to the current item. The menu bar always
contains the menus that apply to the type of window you are using.

Menu items which are assumed to be used very often are also available as tool-bar buttons in the corresponding
tool bar.

Some menus are specific to the active window, some are the same for every window. Within the Natural
Debugger, the "Options" menu, the "Window" menu and the "Help" menu are always part of the menu bar.

There are several ways to open and close a window. Instead of using the menus, you can click buttons from the
tool bar or use accelerator keys.

In contrast to Natural itself:

the debugger has no command line.
the debugger’s "Options" menu contains the options:

"Fonts", which allows you to modify the font of the currently active window;
"Warning messages", which allows you to decide whether warning messages on missing source code
or symbolic information are to be displayed or not. A message that warns you of source code that is
newer than the corresponding generated program is also affected.

Tool Bars and Tool-Bar Buttons

Tool bars are groups of tool-bar buttons. Like the menu bar, the tool bar changes when you activate a different
type of window. The Natural Debugger provides five tool bars, each containing a set of tool-bar buttons that
apply to a particular type of window. By selecting "Customize toolbar" from the "Options" menu, you can
change the location of the tool bar and turn it on or off.

To display a short description of the function of a tool-bar button, place the mouse pointer on the corresponding
button. The description appears in the status line at the bottom of your desktop. If the function of a tool-bar
button is not available in a particular window, the button is disabled.

Copyright © Software AG 200212

Using the DebuggerHow to Use the Natural Debugger

Special Key Combinations

A further possibility to execute a debugger function is by entering a corresponding key combination on your
keyboard. Two different kinds of key combinations can be entered:

Mnemonic combinations: Application icons, menu names, menu items and options in dialog boxes contain
an underscored character (mnemonic). You can, for example, open a menu or choose a menu item by
holding down ALT and pressing the mnemonic character.
Accelerator combinations: These combinations are available only for functions that are assumed to be used
very often. The valid combination (CTRL + key) is then displayed next to the corresponding menu item.

Breakpoints and Watchpoints

Two types of entries can be defined in a program for debugging purposes: breakpoints and watchpoints. Each
breakpoint or watchpoint is assigned a number in ascending order. The numbers are displayed in the Breakpoint
or Watchpoint Maintenance window respectively.To watchpoints, a name is also assigned, which corresponds to
the name of the variable they belong to.

Each breakpoint or watchpoint has a current state; possible values are "active" and "pending". While debugging a
program, this state can be changed; that is, the breakpoint or watchpoint can be activated or deactivated. If its
current state is "pending", a breakpoint or watchpoint is not executed and its event count is not increased either.

Every breakpoint or watchpoint has an event count, which increases every time the debug entry is passed. The
number of executions of a debug entry, however, can be restricted in two ways:

A number of skips can be specified before the breakpoint or watchpoint is executed. The debug entry is then
ignored until the event count is higher than the number of skips specified.
A maximum number of executions can be specified, so that the breakpoint or watchpoint is ignored as soon
as the event count exceeds the specified number of executions.

Restarting the Debugging Session

When you restart your debugging session, the Natural Debugger repositions to the beginning of the application
while all your current settings (for example, watchpoints or breakpoints) are kept and all counters as well as the
calls history are newly initialized. Thus, restarting a debugging session is useful if want to rerun your application
without having to specify again the settings relevant for debugging.

You can restart your debugging session from any point within an application by choosing either the "Restart"
function or the corresponding tool-bar button. The "Restart" function is available on the first menu of the menu
bar of each of the five Natural Debugger main facilities.

If you are debugging a DCOM or RPC server, the "Restart" function restarts the called method or subprogram.

13Copyright © Software AG 2002

Special Key CombinationsUsing the Debugger

Debugger Source Window
When the Natural Debugger is invoked, it receives control of the specified Natural object and displays the
corresponding source in a source window. When the source is not available, the window remains empty. The
trace bar is placed on the first executable source code line.

When a user ’steps’ into a new object or when a breakpoint or watchpoint is found inside a new object, a new
source window displays this object’s source.

When a user ’steps’ into an object whose source window has already been opened, this source window is moved
to the foreground.

The calling object can be identified by the cursor placed at the beginning of its source line in the original source
window.

The title bar of the source window shows you the name and type of the object displayed, the menu bar shows you
the available menus. In addition to the "Options", "Window" and "Help" menus, the following menus are
provided:

Menu Explanation

Run Provides various ways to continue executing the object contained in the source window; execution
stops each time a breakpoint or watchpoint is found, a runtime error occurs, or the object has ended.

Variable Provides various functions to be applied to the currently active variables.

Source Enables you to load another program source, show the current trace bar position, or search for
certain items in the current source.

Calls Provides a list of the Natural objects most recently called.

Run

The "Run" menu enables you to:

proceed with the next program step,
return to the previous level,
execute the current object stepping automatically into any embedded object,
execute the current object stepping automatically over any embedded object,
proceed until either the next breakpoint or watchpoint or the end of the object,
proceed until the next event occurs,
exit the Natural Debugger.

Step Into

When you choose the "Step Into" function, the next program step is executed and the trace bar is placed on the
corresponding source code line.

If this source code line invokes or includes a further Natural object, the debugger steps into this object.

When a Natural program has ended, but another Natural object is still on the Natural stack, the debugger steps
into this object, too.

Copyright © Software AG 200214

Using the DebuggerDebugger Source Window

Step Over

When you choose the "Step Over" function, the next program step is executed and the trace bar is placed on the
corresponding source code line. This time, however, the debugger steps over any invoked or included Natural
object, but stops if this object contains breakpoints or watchpoints.

Step Return

When you choose the "Step Return" function, the debugger returns to the previous program level, but stops if it
finds a breakpoint or watchpoint before this previous level is reached.

Animated Step Into

When you choose the "Animated Step Into" function, the program is executed step by step until the end of the
program. The debugger steps into any Natural object invoked or included.

Animated Step Over

When you choose the "Animated Step Over" function, the program is executed step by step until the end of the
program. The debugger steps over any invoked or included Natural object; if a breakpoint or watchpoint is set, it
jumps to the corresponding statement line and continues animation.

Go!

When you choose the "Go!" function, the object is executed until the next active breakpoint or watchpoint, and
the trace bar is placed on the corresponding source code line.

Next Event!

When you choose the "Next Event!" function, this will have the same effect as the "Go!" function in a non-event
driven application. In an event-driven application, however, the object is executed until the next event is sent to
the application; it stops if an active breakpoint or watchpoint occurs before the next event is sent.

Variable

The "Variable" menu enables you to:

display the contents of selected variables,
modify the contents of selected variables,
watch modifications of the contents of selected variables,
set watchpoints for selected variables.

With the Variable Facility, you can display, modify or watch the contents of and set watchpoints for all active
variables.

Dialog Boxes

When you choose the "Display", "Modify", "Watch" or "Set Watchpoint" function, a dialog box is displayed,
which shows you a list of all currently active local, global, application-independent or system variables. The
following boxes are part of this dialog box:

The "Variable" text box, which shows the currently selected variable.
The "Line Reference" or "Context ID" box, which shows the source code line number of the variable or
context variable currently contained in the "Variable" text box.
The "Line Reference" box is only displayed if the line reference is needed to make the variable selection
unambiguous. This is the case if:

15Copyright © Software AG 2002

VariableUsing the Debugger

the variable belongs to a map; then the box contains the source code line number of the corresponding
RULEVAR syntax element generated by the map editor;
the variable is either a database variable (reporting mode only) or one of the following variables: *ISN,
*COUNTER , *NUMBER; then the box contains the source code line number of the corresponding
database loop or access statement;
the variable is defined in reporting mode, but without a DEFINE DATA statement.

The "Context ID" box is only displayed if the variable is a context variable; then the box contains the
"ctx-Id" (context ID).

The "History List" list box ("Display" function only), which contains the most recently selected variables
(up to 20) using a first-in first-out mechanism.
The history list helps you to quickly locate a variable that has been selected before. Variables can be
selected from the history list in the same way as from the variable list.

The "Variable" list box, which contains the corresponding variable listing.

Selecting Variables

When you select (click) a variable in the variable list of a dialog box, it is shown in the corresponding "Variable"
text box.

When you double-click a variable in the variable list of a dialog box or click it once and then choose OK, a
further dialog box is displayed (except with the "Watch" function).

When you double-click an array or variable group:

the individual array or group elements are displayed in the second dialog box ("Display"),
the array is displayed in the second dialog box for modification; groups cannot be modified ("Modify"),
a corresponding error message is displayed ("Watchpoint").

You can also select a variable by first marking it directly in the source window and then choosing the "Display",
"Modify", "Watch" or "Set Watchpoint" function respectively. Then, the "Variable" text box of the
corresponding dialog box exactly shows the piece of source code you have marked, which can then be quickly
modified.

Marking Text in the Source Window

In the source window, you can mark variables or character strings for selection with either the mouse or the
keyboard.

When marking text using the mouse, place the mouse pointer on the first character to be selected, drag the
pointer to the last character you want to select, and release the mouse button. To cancel a selection, click
anywhere in the document.

When using the keyboard to mark text, cursor movement keys are used. First place the cursor on a character by
using an arrow key, then press and hold down the SHIFT key and use the following keys for text selection:

the LEFT ARROW key to mark the area to the left of your cursor position,
the RIGHT ARROW key to mark the area to the right of your cursor position,
the END key to mark the area until the end of the source code line,
the HOME key to mark the area until the beginning of the source code line.

Copyright © Software AG 200216

Using the DebuggerSelecting Variables

Display

With this function, a variable can be selected from the listing in the dialog box for display along with its current
content in a second "Display Variable" dialog box, where you can choose between alphanumeric and binary
representation of the variable value.

When you select an array, a handle variable or a group of variables, the individual elements and their values are
listed in the second dialog box. With arrays, any variable index expression is evaluated.

The element listing can be expanded or contracted by choosing the "Expand/Contract" button. Whenever the
number of array, group or dialog elements on the list exceeds a certain display limit, a "More" line appears,
which can be double-clicked to display further elements. Alternatively, the "Expand" function can be used again.

A variable, array or group of variables can also be selected for display in the "Display Variable" dialog box by
double-clicking it with the left mouse bottom directly in the source window.

Modify

With this function, a variable can be selected from the listing in the dialog box for display together with its
current value in a second "Modify Variable" dialog box, where its value can be modified.

If you want to modify a system variable, only system variables which can be modified are displayed in the first
dialog box.

If you want to modify an array, only its name but no values are displayed in the second dialog box. The value
you enter will then be valid for all array elements.

Groups of variables cannot be selected for modification.

Variables or arrays can also be selected for modification of their values in the "Modify Variable" dialog box by
clicking them directly in the source window, pressing the left and then the right mouse button.

Watch

With this function, variables, arrays or groups of variables can be selected from the listing in the dialog box for
placement in the "Watch Variables" window, where they can be watched for modification of their values during
the program flow.

If a variable is selected and the "Watch Variables" window is iconized, it will be opened automatically showing
all currently selected variables.

Watchpoint

With this function, single variables and individual group or array elements can be selected from the listing in the
dialog box for the definition of a watchpoint in a second "Set Watchpoint" dialog box; arrays and groups of
variables cannot be selected.

The second "Set Watchpoint" dialog box displays the name of the watchpoint (which corresponds to the name of
the selected variable) together with its line reference (if applicable), and the names of the corresponding Natural
object and library; for further information on line references, see the description of the "Line Reference" box.

Note:
With system variables, the corresponding watchpoint is not attached to a specific library and object; therefore,
the object and library name will always be SYSTEM.

17Copyright © Software AG 2002

DisplayUsing the Debugger

To define a watchpoint, you specify the following items in the corresponding boxes:

the state of the watchpoint,
a condition for the watchpoint to be activated (optional),
the number of skips before execution of the watchpoint,
the maximum number of executions of the watchpoint,

For further information on how to specify these items, refer to the section The "Set Watchpoint" Dialog Box of
the Variable facility.

Note:
Watchpoints can also be set with the "Set Watchpoint" function of the Variable Facility or with the "Set"
function of the "Watchpoint Maintenance" facility.

Source

The "Source" menu enables you to:

load another source program,
show the current trace bar position,
search for an item in the program currently in the source window,
repeat the most recent search operation.

Load

With the "Load" function, you can specify a further source program for being loaded into the source window.
The "Load Source" dialog box appears, in which you specify the program name and the appropriate library name
if the program is not contained in the current library (default).

You can also select a character string for being placed into the "Load Source" dialog box by marking it directly
in the source window and then choosing the "Load" function.

Trace Bar Position

With this function, you can move to the current position of the trace bar.

Search

With the "Search" function, you can search up or down through the active window to locate each occurrence of a
specified word or character string.

The "Search" dialog box appears, where you can enter the text to be located in the "Search For" text box. In
addition, you can turn the "Match Upper/Lower Case" and "Whole Words Only" options on or off.

The first occurrence of the search text is highlighted (selected), whereas a message lets you know if the search
text could not be found.

With the "Match Upper/Lower Case" option, you can specify whether the search operation is to look for an exact
match (ON) or for the same characters only, regardless of case (OFF).

With the "Whole Words Only" option, you can specify whether the search operation is to look for occurrences
that are whole words only, not part of a character string (ON), or for all occurrences of the search text, whole
words and parts of a character string (OFF).

To change the direction of the search, choose the "Up" button to search upwards, to the top of the text, or the
"Down" button to search downwards, to the bottom of the text; "Down" is the default.

Copyright © Software AG 200218

Using the DebuggerSource

If the search does not start at the top (or bottom) of the text, and the search text cannot be found, a dialog
window appears. You can choose "Yes" to continue the search at the top (or bottom) of the text or "No" to cancel
the search.

You can also select a character string to be placed into the "Search for" text box by marking it directly in the
source window and then choosing the "Search" function.

Repeat Search

With this function, you repeat the previous search operation and locate the next occurrence of the search text
specified with the "Search" function.

19Copyright © Software AG 2002

SourceUsing the Debugger

Calls

The "Calls" menu provides you with a list (history) of the most recently called Natural objects including
copycodes and inline subroutines. Up to 20 objects can be listed; the most recently called object appears at the
top of the list.

The objects list consists of the following information:

The level of the called object without counting copycodes and inline subroutines.
The level of the called object counting copycodes and inline subroutines.
The name of the called object.
The type of the called object.
The event and control handle of the event handler to be processed (with event-driven applications only).

The information line at the bottom displays additional information on the called object:

The name of the calling object:
"Natural" is displayed as the calling object if the called object is the application startup program or a
program activated from the Natural stack (including error transaction programs and programs activated by a
RUN statement from inside the application).

The source code line in which the object was called:
If you select an object from the list, except with "Natural", the source of the calling program is displayed in
the middle of the source window with the cursor placed at the beginning of the line in which the call
occurred.

Copyright © Software AG 200220

Using the DebuggerCalls

Watch Variables Facility
The "Watch Variables" facility is primarily intended to select specific variables from a set of variables for closer
and permanent observation of their values.

To invoke the "Watch Variables" facility either choose it from the "Window" menu of any menu bar or
double-click the corresponding icon; the "Watch Variables" window is displayed. If a variable is selected for
placement into the "Watch Variables" window and the window is still iconized, it opens automatically showing
all currently selected variables.

In addition to the "Options", "Window" and "Help" menus, the menu bar of the "Watch Variables" window
provides you with the "Variables" menu, which offers various functions to be applied to the variables currently
placed in the "Watch Variables" window.

The "Variables" Menu

The "Variables" menu enables you to:

add a new variable to be displayed in the "Watch Variables" window,
expand or contract the selected variable group, array or handle variable,
remove the selected variable from the "Watch Variables" window,
display the location of the selected variable,
remove all variables from the "Watch Variables" window,
watch the value of a selected variable in binary or alphanumeric format,
watch all variable values in either binary or alphanumeric format,
exit the Natural Debugger.

Add

When you choose the "Add" function, a dialog box is displayed, which shows you a list of all currently active
local, global or application-independent variables. Variables, arrays or groups of variables can be selected from
this list to be placed into the "Watch Variables" window, where they can be watched for modification of their
values during the program flow.

Note:
Variables can also be selected to be watched in the "Watch Variables" window by using the "Watch" function of
either the "Variable" menu in the source window’s menu or tool bar, or the "Variables" menu of the Variable
Facility.

21Copyright © Software AG 2002

Watch Variables FacilityUsing the Debugger

Expand/Contract

The "Expand/Contract" function can only be used with arrays, variable groups or handle variables. When you
select an array or a group variable marked with a "+" character, you display its individual elements (Expand);
when you select an array or a group variable marked with a "-" character, you return to the display of the array or
group variable only (Contract). When you expand handle variables, the individual properties dialog windows are
displayed.

The same can be achieved by double-clicking arrays, groups or handle variables marked with "+" or "-" directly
in the "Watch Variables" window.

Whenever the number of array, group or dialog elements exceeds a certain display limit, a "More" line appears,
which can be double-clicked to display further elements. Alternatively, the "Expand" function can be used again.

Delete

With the "Delete" function, you can delete a selected variable from the "Watch Variables" window.

Display

With the "Display" function, you can display the name of the object and the library for which the selected
variable is defined. In some cases, also the variable’s source code line number is displayed.

Delete All

With the "Delete All" function, you can delete all variables currently contained in the "Watch Variables"
window.

Binary/Alphanumeric

With the "Binary/Alphanumeric" function, you can watch the value of a selected variable in either binary or
alphanumeric format.

All Binary/Alphanumeric

With the "All Binary/Alphanumeric" function, you can watch the values of all variables currently contained in
the "Watch Variables" window in either binary or alphanumeric format.

Copyright © Software AG 200222

Using the DebuggerExpand/Contract

Variable Facility
You invoke the Variables Facility by either choosing it from the "Window" menu of any menu bar or
double-clicking the corresponding icon. The "Variable Facility" window is displayed, which contains the
specifications of currently active local, global, application-independent or system variables:

Item Shows

Lv The level of the displayed variable.

Tp The type of the displayed variable; valid types are:
A - for array,
G - for variable group,
H - for handle variable,
R - for redefined variable,
S - for scalar variable.

Name The name of the displayed variable.

St The state of the displayed variable; valid states are:
"+" - group, array or handle variable ("contracted" display),
"-" - group, array or handle variable ("expanded" display),
"0" - single variable or individual group or array element.

Line/Ctx-Id The source code line reference of the displayed variable. If your variable is a context variable, the
"Ctx-Id" item is displayed instead (the context ID associated to the context variable).

Fmt The format and length of the displayed variable.

Contents The value of the variable displayed.
The displayed value is updated when using, for example, the "Refresh" function of the
"Variables" menu.

In addition to the "Options", "Window" and "Help" menus, the menu bar of the Variable Facility provides you
with the "Variables" Menu, which offers various functions to be applied on the variables currently placed in the
"Variable Facility" window.

"Variables" Menu

The "Variables" menu enables you to:

search for a specific variable,
expand or contract the selected variable group, array or handle variable,
modify the contents of the selected variable,
watch the contents of the selected variable,
set a watchpoint for the selected variable,
show all local variables contained in the current program,
show all variables of the currently active global data area,
show all application-independent variables,
show all context variables,
show all system variables,
show all variable values in either binary or alphanumeric format,
show the latest values of the currently displayed variables,
exit the Natural Debugger.

23Copyright © Software AG 2002

Variable FacilityUsing the Debugger

Search

With the "Search" function, you can search up or down through the active window to locate each occurrence of a
specified name or character string.

The "Search" dialog box appears, where you can enter the text to be located in the "Search For" text box. In
addition, you can turn the "Match Upper/Lower Case" and "Whole Words Only" options on or off.

The line with the first occurrence of the search text is highlighted (selected), whereas a message lets you know if
the search text could not be found.

With the "Match Upper/Lower Case" option, you can specify whether the search operation is to look for an exact
match (ON) or for the same characters only, regardless of case (OFF).

With the "Whole Words Only" option, you can specify whether the search operation is to look for occurrences
that are whole words only, not part of a character string (ON), or for all occurrences of the search text, whole
words and parts of a character string (OFF).

To change the direction of the search, choose the "Up" button to search upwards, to the top of the text, or the
"Down" button to search downwards, to the bottom of the text; "Down" is the default. If the search does not start
at the top (or bottom) of the text, and the search text cannot be found, a dialog window appears. You can choose
"Yes" to continue the search at the top (or bottom) of the text or "No" to cancel the search.

Repeat Search

With this function you repeat the previous search operation and locate the next occurrence of the search text
specified with the "Search" function.

Copyright © Software AG 200224

Using the Debugger"Variables" Menu

Expand/Contract

The "Expand/Contract" function can only be used with arrays, variable groups or handle variables. When you
select an array or a group variable with a "+" character in the "St" column, you can display its individual
elements (Expand); when you select an array or a group variable with a "-" character in the "St" column, you
return to the display of the array or group variable only. When you expand handle variables, the individual
properties dialog windows are displayed.

The same can be achieved by double-clicking arrays, groups or handle variables with state "+" or "-" directly in
the "Variable Facilities" window.

Whenever the number of array, group or dialog window elements exceeds a certain display limit, a "More" line
appears, which can be double-clicked to display further elements. Alternatively, the "Expand" function can be
used again.

Modify

With the "Modify" function, a variable or array can be selected from the "Variable Facility" window for
modification of its value in the "Modify Variable" dialog box.

The new value must be valid for the format of the variable or array.

When you select an array, only its name but no values are displayed in the dialog box. The value you enter will
then be valid for all array elements.

Groups of variables cannot be selected for modification.

Note:
Variables or arrays can also be selected for modification of their values in the "Modify Variable" dialog box by
using the "Modify" function of the "Variable" menu in the source window’s menu or tool bar.

Watch

With the "Watch" function, variables, arrays and groups of variables can be placed into the "Watch Variables"
window, where they can be watched for modification of their values during the program flow.

If a variable is selected and the "Watch Variables" window is iconized, it will be opened automatically showing
all currently selected variables.

Note:
Variables can also be selected to be watched in the "Watch Variables" window by using either the "Watch"
function of the "Variable" menu in the source window’s menu or tool bar, or the "Watch Variables" function
itself.

Set Watchpoint

With the "Set Watchpoint" function, single variables and individual group or array elements can be selected from
the "Variable Facility" window for the definition of a watchpoint in the "Set Watchpoint" dialog box; arrays and
groups of variables cannot be selected.

25Copyright © Software AG 2002

"Variables" MenuUsing the Debugger

"Set Watchpoint" Dialog Box

The "Set Watchpoint" dialog box displays the name of the watchpoint (which corresponds to the name of the
selected variable) together with its line reference/context ID (if applicable) and the names of the corresponding
Natural object and library; for further information on line references/context IDs, see the description of the "Line
Reference" box.

Note:
With system variables, the corresponding watchpoint is not attached to a specific library and object; therefore,
the object and library name will always be SYSTEM.

To define a watchpoint, you have to specify the following items in the corresponding boxes:

The state of the watchpoint to be set; valid states are "active" (default) and "pending".
A condition for the watchpoint to be activated (optional).

You can specify an appropriate value and watchpoint operator; if no operator and value (that is, condition) is
specified, the default setting (MOD) applies (for a description of the individual watchpoint operators, see below).

The number of skips before execution of the watchpoint if it is not to be executed until the program has run
a certain number of times; the default is "0".
The maximum number of executions of the watchpoint; the default is "0".

Watchpoint specifications are not set until you either choose the "Set" button or press ENTER. If you choose the
"Cancel" button or press ESC, no watchpoint will be set.

Once a watchpoint has been specified, it remains set until you either leave your Natural application or explicitly
delete it.

Copyright © Software AG 200226

Using the Debugger"Variables" Menu

Watchpoint Operators

Watchpoint operators are set via option buttons; the available watchpoint operators are:

Operator Explanation

MOD Modification
This is the default setting. It indicates that the watchpoint is activated each time a modification of
the variable occurs.

EQ Equal
The EQ operator indicates that the watchpoint is activated only when the current value of the
variable is equal to the specified value.

NE Not Equal
The NE operator indicates that the watchpoint is activated only when the current value of the
variable is not equal to the specified value.

GT Greater Than
The GT operator indicates that the watchpoint is activated only when the current value of the
variable is greater than the specified value.

GE Greater or Equal
The GE operator indicates that the watchpoint is activated only when the current value of the
variable is greater than or equal to the specified value.

LT Less Than
The LT operator indicates that the watchpoint is activated only when the current value of the
variable is less than the specified value.

LE Less or Equal
The LE operator indicates that the watchpoint is activated only when the current value of the
variable is less than or equal to the specified value.

Note:
Watchpoints can also be set with the "Watchpoint" function in the source window or with the "Set" function of
the "Watchpoint Maintenance" facility.

Local

With the "Local" function, you can display all local variables of the current program in the "Variable Facilities"
window.

With this function, also internally generated temporary variables are displayed, which, in case of system variable
access, have the same name as the system variables (for example, *EVENT), from which they receive their
values.

GDA

With the GDA function, you can display all variables of the currently active global data area (GDA) in the
"Variable Facilities" window.

AIV

With the AIV function, you can display all application-independent variables (AIVs) in the "Variable Facilities"
window.

27Copyright © Software AG 2002

Watchpoint OperatorsUsing the Debugger

CTX

With the CTX function, you can display all content variables in the "Variable Facilities" window.

System

With the "System" function, you can display all Natural system variables in the "Variable Facilities" window.

All Binary/Alphanumeric

With the "All Binary/Alphanumeric" function, you can switch between binary and alphanumeric representation
of the values of all variables displayed in the "Variable Facilities" window.

Refresh

With the "Refresh" function, you can show the latest values of the variables currently displayed in the "Variable
Facilities" window.

Since an automatic refresh of variable values would be too time-consuming here, latest variable values are
automatically displayed with the "Watch Variables" facility only.

Copyright © Software AG 200228

Using the DebuggerRefresh

Watchpoint Maintenance
Using watchpoints, you can rapidly detect "illegal" alterations to Natural variables by objects that contain errors.

By default, watchpoints are used to instruct the Natural Debugger to interrupt the execution of a Natural object
when the contents of a variable change. However, by specifying a certain value for the variable together with a
watchpoint operator when setting a watchpoint, a condition can be set which only activates the watchpoint when
it becomes true.

A variable is considered to have changed either when its current value differs from the value recorded when the
watchpoint was last triggered or when it differs from the initial value.

A watchpoint is defined and maintained with the "Watchpoint Maintenance" facility. You invoke the
"Watchpoint Maintenance" facility by either choosing it from the "Window" menu of any menu bar or
double-clicking the corresponding icon. The "Watchpoint Maintenance" window is displayed, which contains a
list of all watchpoints defined for the current program.

The following items are listed:

Item Shows

No The number of the listed watchpoint.

Variable The name of the variable for which the watchpoint was set.

Object The name of the object which contains the listed watchpoint.

Count Shows how often a watchpoint has been executed.

In addition to the "Options", "Window" and "Help" menus, the menu bar of the "Watchpoint Maintenance"
facility contains the "Watchpoint" menu, which provides you with the possibility to define new watchpoints and
with various functions to be applied to the watchpoints currently listed in the "Watchpoint Maintenance"
window.

"Watchpoint" Menu

The "Watchpoint" menu enables you to:

define a new watchpoint,
activate or deactivate a selected watchpoint,
delete a selected watchpoint,
display a selected watchpoint,
modify a selected watchpoint,
delete all watchpoints set in the current program,
deactivate all watchpoints in the current program,
activate all watchpoints in the current program.

Some of the provided functions require to previously select a watchpoint. To select a watchpoint in the
"Watchpoint Maintenance" window, click it with the left mouse button.

Set

With this function, single variables, arrays and individual group elements can be selected from the listing in the
"Set Watchpoint" dialog box for the definition of a watchpoint in a second "Set Watchpoint" dialog box; entire
groups of variables cannot be selected.

29Copyright © Software AG 2002

Watchpoint MaintenanceUsing the Debugger

The second "Set Watchpoint" dialog box displays the name of the watchpoint (which corresponds to the name of
the selected variable) together with its line reference/context ID (if applicable) and the names of the
corresponding Natural object and library; for further information on line references/context IDs, see the
description of the "Line Reference" box .

Note:
With system variables, the corresponding watchpoint is not attached to a specific library and object; therefore,
the object and library name will always be SYSTEM.

To define a watchpoint, you have to specify the following items in the corresponding boxes:

the state of the watchpoint,
a condition for the watchpoint to be activated (optional),
the number of skips before execution of the watchpoint,
the maximum number of executions of the watchpoint,

For further information on how to specify these items, refer to the section "Set Watchpoint" Dialog Box of the
Variable Facility.

Note:
Watchpoints can also be set with the "Watchpoint" function in the source window or with the "Set Watchpoint"
function of the Variable Facility.

Activate/Deactivate

With the "Activate/Deactivate" function, you can set the current state of the selected watchpoint to "active" or
"pending" respectively.

Delete

With the "Delete" function, you can delete the selected watchpoint.

Copyright © Software AG 200230

Using the DebuggerSet

Display

With the "Display" function, you can display the selected watchpoint. The "Display Watchpoint" dialog box
appears showing you all the specifications of this watchpoint. These are:

The number of the listed watchpoint.
The state of the listed watchpoint; valid states are "active" (default) or "pending".
The name of the variable for which the watchpoint was set.
The source code line reference of the variable for which the watchpoint is set/the context ID of the context
variable (if either is applicable); for further information on line references/context variables, see the
description of the "Line Reference" box.
The operator which has been set for the listed watchpoint; the default operator is MOD.
The value specified with the watchpoint operator; with the default operator (MOD), no value (condition)
can be specified.
The name of the object which contains the listed watchpoint.
The library which contains the object with the listed watchpoint.
The number of skips before execution of the watchpoint.
The maximum number of executions of the watchpoint.
The number of how often a watchpoint has been executed.

Modify

With the "Modify" function, you can modify the selected watchpoint. The "Modify Watchpoint" dialog box
appears, where you can modify the specifications of this watchpoint.

For further information on these items, refer to the section "Set Watchpoint" Dialog Box of the Variable
Facility.

Any modifications to the watchpoint are not performed until you choose the "Modify" button or press ENTER. If
you choose the "Cancel" button or press ESC, the watchpoint remains unchanged.

You can also select a watchpoint for being modified in the "Modify Watchpoint" dialog box by double-clicking
it directly in the "Watchpoint Maintenance" window.

Delete All

With the "Delete All" function, you can delete all watchpoints currently listed in the "Watchpoint Maintenance"
window.

Deactivate All

With the "Deactivate All" function, you can deactivate all watchpoints currently listed in the "Watchpoint
Maintenance" window.

Activate All

With the "Activate All" function, you can activate all watchpoints currently listed in the "Watchpoint
Maintenance" window.

31Copyright © Software AG 2002

SetUsing the Debugger

Breakpoint Maintenance
A breakpoint is a point at which control is returned to the user while a Natural object is executing.

Breakpoints are defined and maintained with the "Breakpoint Maintenance" facility. You invoke the "Breakpoint
Maintenance" facility by either choosing it from the "Window" menu of any menu bar or double-clicking the
corresponding icon. The "Breakpoint Maintenance" window is displayed, which contains a list of all breakpoints
defined for the current program.

The following items are listed:

Item Explanation

No The number of the listed breakpoint.

Line The number of the source code line on which the breakpoint is set.

Object The name of the object which contains the listed breakpoint.

Count Displays how often a breakpoint has been executed.

In addition to the "Options", "Window" and "Help" menus, the menu bar of the "Breakpoint Maintenance"
facility contains the "Breakpoint" menu, which provides you with both the possibility to define new breakpoints
and various functions to be applied to the breakpoints currently listed in the "Breakpoint Maintenance" window.

"Breakpoint" Menu

The "Breakpoint" menu enables you to:

define a breakpoint,
activate or deactivate a selected breakpoint,
delete a selected breakpoint,
display a selected breakpoint,
modify a selected breakpoint,
delete all breakpoints set in the current program,
deactivate all breakpoints in the current program,
activate all breakpoints in the current program.

Some of the provided functions require to previously select a breakpoint. To select a breakpoint in the
"Breakpoint Maintenance" window, click it with the left mouse button.

Copyright © Software AG 200232

Using the DebuggerBreakpoint Maintenance

Set

With the "Set" function, you can define a new breakpoint. The "Set Breakpoint" dialog box is displayed, where
you define the breakpoint by specifying the following items in the corresponding boxes:

The state of the breakpoint to be set; valid states are "active" (default) and "pending".
The name of the Natural object to contain the breakpoint; the default object name is the name of the object
currently in the source window.
The name of the Natural library that contains the object with the breakpoint; the default library name is the
name of the library which contains the object currently in the source window.
The line number of the object’s source code where the breakpoint is to be executed.

"Begin" means that the breakpoint is to be set at the first executable line of code of the specified object; "End"
means that the breakpoint is to be set at the last executable line of code of the specified object.

The number of skips before execution of the breakpoint if it is not to be executed until the program has run
a certain number of times; the default is "0".
The maximum number of executions of the breakpoint; the default is "0".

Breakpoint specifications are not set until you either choose the "Set" button or press ENTER. If you choose the
"Cancel" button or press ESC, no breakpoint will be set.

Breakpoints can also be set directly in the program currently contained in the source window by double-clicking
the appropriate statement line with the right mouse button. This way, a breakpoint is defined with all default
values and the corresponding source code line number. It can be displayed and/or modified by using the
corresponding functions.

Breakpoints cannot be set on comment lines, or on any statement line other than the first one if a single statement
occupies more than one line.

Once a breakpoint has been defined, it remains set until you either leave your Natural application or explicitly
delete it.

Activate/Deactivate

With the "Activate/Deactivate" function, you can set the current state of the selected breakpoint to "active" or
"pending" respectively.

Delete

With the "Delete" function, you can delete the selected breakpoint.

A breakpoint can also be deleted directly in the program currently contained in the source window by
double-clicking it with the right mouse button.

33Copyright © Software AG 2002

"Breakpoint" MenuUsing the Debugger

Display

With the "Display" function, you can display the selected breakpoint. The "Display Breakpoint" dialog box
appears showing you all the specifications of this breakpoint. These are:

The number of the listed breakpoint.
The state of the listed breakpoint; valid states are "active" (default) or "pending".
The name of the object which contains the listed breakpoint.
The library which contains the object with the listed breakpoint.
The number of the source code line on which the breakpoint is set.
The number of skips before execution of the breakpoint.
The maximum number of executions of the breakpoint.
The number of how often a breakpoint has been executed.

Modify

With the "Modify" function, you can modify the selected breakpoint. The "Modify Breakpoint" dialog box
appears, where you can modify the specifications of this breakpoint, see also section Set.

Any modifications to the breakpoint are not performed until you either choose the "Modify" button or press
ENTER. If you choose the "Cancel" button or press ESC, the breakpoint remains unchanged.

You can also select a breakpoint for being modified in the "Modify Breakpoint" dialog box by double-clicking it
directly in the "Breakpoint Maintenance" window.

Delete All

With the "Delete All" function, you can delete all breakpoints currently listed in the "Breakpoint Maintenance"
window.

Deactivate All

With the "Deactivate All" function, you can deactivate all breakpoints currently listed in the "Breakpoint
Maintenance" window.

Activate All

With the "Activate All" function, you can activate all breakpoints currently listed in the "Breakpoint
Maintenance" window.

Copyright © Software AG 200234

Using the Debugger"Breakpoint" Menu

	Cover Page
	page 2

	Table of Contents
	Natural Debugger
	General Information
	About This Documentation
	Other Natural Documentation

	Local and Remote Debugging
	Local Debugging
	Remote Debugging
	Scenario 1: Debugging a Single Natural Application
	Scenario 2: Debugging a Distributed Natural Application
	Scenario 3: Debugging The Natural Part of a Heterogeneous Application

	Setting Up Your Environment
	Windows€NT/2000 Side
	Natural Side

	Running a Natural Remote Debugging Session

	Using the Debugger
	General Information
	Preparing Natural Objects
	Starting the Natural Debugger
	Leaving the Natural Debugger
	"Exit" Function

	How to Use the Natural Debugger
	Windows and Menus
	Tool Bars and Tool-Bar Buttons
	Special Key Combinations
	Breakpoints and Watchpoints
	Restarting the Debugging Session

	Debugger Source Window
	Run
	Step Into
	Step Over
	Step Return
	Animated Step Into
	Animated Step Over
	Go!
	Next Event!

	Variable
	Dialog Boxes
	Selecting Variables
	Marking Text in the Source Window
	Display
	Modify
	Watch
	Watchpoint
	Source
	Load
	Trace Bar Position
	Search
	Repeat Search

	Calls

	Watch Variables Facility
	Add
	Expand/Contract
	Delete
	Display
	Delete All
	Binary/Alphanumeric
	All Binary/Alphanumeric

	Variable Facility
	"Variables" Menu
	Search
	Repeat Search
	Expand/Contract
	Modify
	Watch
	Set Watchpoint
	"Set Watchpoint" Dialog Box

	Watchpoint Operators
	Local
	GDA
	AIV
	CTX
	System
	All Binary/Alphanumeric

	Refresh

	Watchpoint Maintenance
	"Watchpoint" Menu
	Set
	Activate/Deactivate
	Delete
	Display
	Modify
	Delete All
	Deactivate All
	Activate All

	Breakpoint Maintenance
	"Breakpoint" Menu
	Set
	Activate/Deactivate
	Delete
	Display
	Modify
	Delete All
	Deactivate All
	Activate All

